
BitDevs NYC - Socratic Seminar 93 - 2019/06/13

Building mempool.observer -
mempool stats and visualizations

@0xb10c https://b10c.me @ 0xb10c@gmail.com

Who am I?

- In NYC for the first month of the Chaincode Residency
- Working on Bitcoin side projects since spring 2017

- https://mempool.observer (v1 in 2017)
- https://transactionfee.info/charts (2018, BitDevs SS79 and SS81)

0xb10c (Timo)
 Germany

https://twitter.com/0xB10C
https://mempool.observer
https://transactionfee.info/charts

@0xb10c https://b10c.me @ 0xb10c@gmail.com

Motivation for mempool.observer
- Educate new-ish Bitcoin users about the/my mempool

- Why is my transaction stuck for 20 hours?
- What can I do now?

- Inform power users about the/my mempool state
- Is my wallets fee estimator reasonable? (i.e. current mempool)

- When did the/my mempool clear the last time? (i.e. historical mempool)

- Personal learning and contributing

"What's going to happen to Bitcoin?" is the wrong question.
 The right question is "What are you going to contribute?"

 — Greg Maxwell .

https://twitter.com/0xB10C

https://mempool.observer

Live demo

https://mempool.observer/

@0xb10c https://b10c.me @ 0xb10c@gmail.com

- JSON-RPC: getrawmempool true
- RPC calls can be quite slow for a large mempool: set timeout and fetch frequency accordingly
- PR #14984 by promag: rpc: Speedup getrawmempool when verbose=true

- O(n²) → O(n) (~30% speedup for me at 57k tx)
- Merged May 15th and tagged for v0.19.0

- REST: /rest/mempool/contents.json
- Faster than JSON-RPC
- I did some profiling on MempoolToJSON() but you need a full mempool for that...

- How do you realistically fake your mempool for profiling? (ask this in Q&A)
- Reading the HTTP response on my side somehow takes a lot of time...

- Reading mempool.dat after savemempool
- By far the fastest
- Does not include fees (that could easily be patched, but I’ll try not to for now)

Bitcoin Core mempool interfaces and their challenges

https://twitter.com/0xB10C
https://github.com/bitcoin/bitcoin/pull/14984

@0xb10c https://b10c.me @ 0xb10c@gmail.com

Current TODOs
- Notify user on transaction confirmation (while preserving privacy)

- Receive rawblock over ZMQ
- Broadcast block txids over Websocket
- Web notification or sound upon confirmation (i.e. user txid == txid in block)

bug

new feature

new feature

- Properly handle transaction packages
- Live chart of incoming transaction

- Live plain tx per second chart… (boring)
- Extended with data from rawtx over ZMQ→ getmempoolentry rawtx[‘txid’]

- Scatterplot entrytime x feerate
- Extend with: size, fee, tx type (e.g. SegWit, RBF, multisig...) ...

https://twitter.com/0xB10C

@0xb10c https://b10c.me @ 0xb10c@gmail.com

missing Screenshot from

https://mempool.observer/timeInMe
mpool.html

Live transactions: entrytime x feerate

https://twitter.com/0xB10C

@0xb10c https://b10c.me @ 0xb10c@gmail.com

Ideas for the future of mempool.observer
- Feerate converter between sat/byte, BTC/kB (Bitcoin Core),

sat/kB and sat/kw (c-lightning, lnd)
- Rate feerate estimators: comparing estimate vs block feerates
- Somehow integrate Kalle Alm’s Mempool File Format
- ...

https://twitter.com/0xB10C
https://github.com/kallewoof/mff

Thank you BitDevs NYC!
Thank you Chaincode for flying me out for the Residency!

@0xb10c https://b10c.me

mempool.observer
github.com/0xB10C/memo

9@0xb10c https://b10c.me @ 0xb10c@gmail.com

You can vote for features here and now
https://simplevote.tk/#/poll/J62y

https://twitter.com/0xB10C
https://mempool.observer/
https://github.com/0xB10C/memo
https://twitter.com/0xB10C
https://simplevote.tk/#/poll/J62y

Filling up my mempool for profiling and benchmarking
1 nBlocks = 25
2 get all raw tx from the last <nBlocks> by iterating over each
3 invalidate block at <currentHeight> - <nBlocks> (keep that block hash)
4 broadcast the raw tx from the previous <nBlocks> (line 2)

-- do profiling and stuff here --

5 reconsider block at <currentHeight> - <nBlocks> (with the block hash from line 3)

- Do this only on your local dev setup
- Fills mempool with transactions from the last nBlocks blocks

- Fastest method I’ve tried (yet)
- Mempool closer to reality than 100k*[vin: 1, vout: 2] on regtest
- Transactions with e.g. locktime fail

⇒ Transactions spending these fail too → not a 100% realistic mempool

Results profiling REST: /rest/mempool/contents.json

with ~75k tx

